1 (i)	$\begin{aligned} & \mathbf{d}_{K}=\left(\begin{array}{c} 8 \\ -1 \\ -14 \end{array}\right) \times\left(\begin{array}{c} 6 \\ 2 \\ -5 \end{array}\right)=\left(\begin{array}{c} 33 \\ -44 \\ 22 \end{array}\right)\left[=11\left(\begin{array}{c} 3 \\ -4 \\ 2 \end{array}\right)\right] \\ & \mathbf{d}_{L}=\left(\begin{array}{c} 8 \\ -1 \\ -14 \end{array}\right) \times\left(\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right)=\left(\begin{array}{c} 15 \\ -20 \\ 10 \end{array}\right)\left[=5\left(\begin{array}{c} 3 \\ -4 \\ 2 \end{array}\right)\right] \end{aligned}$ Hence K and L are parallel For a point on $K, \quad z=0, x=3, y=4$ i.e. (3, 4, 0) For a point on $L, z=0, x=6, y=28$ i.e. (6, 28, 0)	$\begin{aligned} & \text { M1* } \\ & \text { A1* } \\ & \\ & \text { A1 } \\ & \text { M1*A1* } \\ & \\ & \text { A1* } \end{aligned}$	Finding direction of K or L One direction correct * These marks can be earned anywhere in the question Correctly shown Finding one point on K or L or $(6,0,2)$ or $(0,8,-2)$ etc $\operatorname{Or}(27,0,14)$ or $(0,36,-4)$ etc
	$\begin{aligned} & {\left[\left(\begin{array}{c} 6 \\ 28 \\ 0 \end{array}\right)-\left(\begin{array}{l} 3 \\ 4 \\ 0 \end{array}\right)\right] \times\left(\begin{array}{c} 3 \\ -4 \\ 2 \end{array}\right)=\left(\begin{array}{c} 3 \\ 24 \\ 0 \end{array}\right) \times\left(\begin{array}{c} 3 \\ -4 \\ 2 \end{array}\right)=\left(\begin{array}{c} 48 \\ -6 \\ -84 \end{array}\right)} \\ & \text { Distance is } \frac{\sqrt{48^{2}+6^{2}+84^{2}}}{\sqrt{3^{2}+4^{2}+2^{2}}}=\frac{\sqrt{9396}}{\sqrt{29}}=18 \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { M1 } \\ \text { A1 } & \\ & \\ \hline \end{array}$	For $(\mathbf{b}-\mathbf{a}) \times \mathbf{d}$ Correct method for finding distance
	$\text { OR }\left(\begin{array}{c} 6+3 \lambda-3 \\ 28-4 \lambda-4 \\ 2 \lambda \end{array}\right) \cdot\left(\begin{array}{c} 3 \\ -4 \\ 2 \end{array}\right)=0$ $-87+29 \lambda=0, \quad \lambda=3$ Distance is $\sqrt{12^{2}+12^{2}+6^{2}}=18$		For $(\mathbf{b}+\lambda \mathbf{d}-\mathbf{a}) . \mathbf{d}=0$ Finding λ, and the magnitude
(ii)	Distance from $(3,4,0)$ to R is $\left\lvert\, \begin{aligned} &\left\|\frac{2 \times 3+4-0-40}{\sqrt{2^{2}+1^{2}+1^{2}}}\right\| \\ &=\frac{30}{\sqrt{6}}=\frac{30 \sqrt{6}}{6}=5 \sqrt{6} \end{aligned}\right.$	M1A1 ft A1 ag	
(iii)	$\begin{align*} K, M \text { intersect if } 1+5 \lambda & =3+3 \mu \tag{1}\\ -4-4 \lambda & =4-4 \mu \\ 3 \lambda & =2 \mu \tag{3} \end{align*}$ Solving (2) and (3): $\lambda=4, \mu=6$ Check in (1): LHS $=1+20=21$, RHS $=3+18=21$ Hence K, M intersect, at (21, $-20,12$)	M1 A1 ft M1M1 M1A1 A1	At least 2 eqns, different parameters Two equations correct Intersection correctly shown Can be awarded after M1A1M1 M0M0
	OR M meets P when $8(1+5 \lambda)-(-4-4 \lambda)-14(3 \lambda)=20$ M meets Q when $\begin{equation*} 6(1+5 \lambda)+2(-4-4 \lambda)-5(3 \lambda)=26 \tag{A1} \end{equation*}$ Both equations have solution $\lambda=4$ Point is on P, Q and M; hence on K and M M2 Point of intersection is $(21,-20,12) \quad$ A1		Intersection of M with both P and Q

(iv)	$\left[\left(\begin{array}{c}6 \\ 28 \\ 0\end{array}\right)-\left(\begin{array}{c}1 \\ -4 \\ 0\end{array}\right)\right] \cdot\left[\left(\begin{array}{c}3 \\ -4 \\ 2\end{array}\right) \times\left(\begin{array}{c}5 \\ -4 \\ 3\end{array}\right)\right]=\left(\begin{array}{c}5 \\ 32 \\ 0\end{array}\right) \cdot\left(\begin{array}{c}-4 \\ 1 \\ 8\end{array}\right)=12$	M1A1 ft M1	For evaluating $\mathbf{d}_{L} \times \mathbf{d}_{M}$ For $(\mathbf{b}-\mathbf{c}) \cdot\left(\mathbf{d}_{L} \times \mathbf{d}_{M}\right)$
A1 ft			
Distance is $\frac{12}{\sqrt{4^{2}+1^{2}+8^{2}}}=\frac{12}{9}=\frac{4}{3}$	Numerical expression for distance		

2 (i)	$\begin{aligned} & \frac{\partial z}{\partial x}=y^{2}-8 x y-6 x^{2}+54 x-36 \\ & \frac{\partial z}{\partial y}=2 x y-4 x^{2} \end{aligned}$	$\left.\begin{array}{ll} \mathrm{B} 2 & \\ \text { B1 } & \\ & 3 \end{array} \right\rvert\,$	Give B1 for 3 terms correct
(ii)	At stationary points, $\frac{\partial z}{\partial x}=0$ and $\frac{\partial z}{\partial y}=0$ When $x=0, y^{2}-36=0$ $y= \pm 6 ; \text { points }(0,6,20) \text { and }(0,-6,20)$ When $y=2 x, 4 x^{2}-16 x^{2}-6 x^{2}+54 x-36=0$ $\begin{gathered} -18 x^{2}+54 x-36=0 \\ x=1,2 \end{gathered}$ Points (1, 2, 5) and (2, 4, 8)	M1 M1 A1A1 M1 M1A1 A1 8	If A0, give A1 for $y= \pm 6$ or $y=2,4$ A0 if any extra points given
(iii)	When $x=2, z=2 y^{2}-16 y+40$ When $y=4, z=-2 x^{3}+11 x^{2}-20 x+20$ The point is a minimum on one section and a maximum on the other; so it is neither a maximum nor a minimum	B1 B1 B1 B1 B1 B1	‘Upright’ parabola $(2,4,8)$ identified as a minimum (in the first quadrant) 'Negative cubic' curve $(2,4,8)$ identified as a stationary point Fully correct (unambiguous minimum and maximum)
(iv)	Require $\frac{\partial z}{\partial x}=-36$ and $\frac{\partial z}{\partial y}=0$ When $\begin{aligned} & \text { n } x=0, y^{2}-36=-36 \\ & y=0 ; \text { point }(0,0,20) \end{aligned}$ When $\begin{aligned} & \begin{array}{l} y=2 x, 4 x^{2}-16 x^{2}-6 x^{2}+54 x-36=-36 \\ \\ \quad-18 x^{2}+54 x=0 \\ x=0,3 \end{array} \\ & x=0 \text { gives }(0,0,20) \text { same as above } \\ & x=3 \text { gives }(3,6,-7) \end{aligned}$	M1 M1 A1 M1 M1 A1 A1 7	$\frac{\partial z}{\partial x}=36$ can earn all M marks Solving to obtain x (or y) or stating 'no roots' if appropriate (e.g. when +36 has been used)

3 (i)	$\begin{aligned} 1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2} & =1+\left(x-\frac{1}{4 x}\right)^{2} \\ & =1+x^{2}-\frac{1}{2}+\frac{1}{16 x^{2}}=x^{2}+\frac{1}{2}+\frac{1}{16 x^{2}} \\ & =\left(x+\frac{1}{4 x}\right)^{2} \end{aligned}$ Arc length is $\int_{1}^{a}\left(x+\frac{1}{4 x}\right) \mathrm{d} x$ $\begin{aligned} & =\left[\frac{1}{2} x^{2}+\frac{1}{4} \ln x\right]_{1}^{a} \\ & =\frac{1}{2} a^{2}+\frac{1}{4} \ln a-\frac{1}{2} \end{aligned}$	M1 A1 M1 M1 A1 ag 5	$\text { For } \int \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$
(ii)	Curved surface area is $\int 2 \pi x \mathrm{ds}$ $\begin{aligned} & =\int_{1}^{4} 2 \pi x\left(x+\frac{1}{4 x}\right) \mathrm{d} x \\ & =2 \pi\left[\frac{1}{3} x^{3}+\frac{1}{4} x\right]_{1}^{4} \\ & =\frac{87 \pi}{2} \quad(\approx 137) \end{aligned}$	M1 A1 ft M1 A1 A1 	Any correct integral form (including limits) for $\frac{1}{3} x^{3}+\frac{1}{4} x$
(iii)	$\begin{aligned} \rho & =\frac{\left(1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}\right)^{\frac{3}{2}}}{\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}}=\frac{\left(a+\frac{1}{4 a}\right)^{3}}{1+\frac{1}{4 a^{2}}} \\ & =\frac{a\left(a+\frac{1}{4 a}\right)^{3}}{a+\frac{1}{4 a}}=a\left(a+\frac{1}{4 a}\right)^{2} \end{aligned}$	B1 B1 M1 A1 A1 ag 	any form, in terms of x or a any form, in terms of x or a Formula for ρ or κ ρ or κ correct, in any form, in terms of x or a
(iv)	At $\left(1, \frac{1}{2}\right), \rho=\left(\frac{5}{4}\right)^{2}=\frac{25}{16}$ $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=1-\frac{1}{4}=\frac{3}{4}, \text { so } \hat{\mathbf{n}}=\binom{-\frac{3}{5}}{\frac{4}{5}} \\ & \mathbf{c}=\binom{1}{\frac{1}{2}}+\frac{25}{16}\binom{-\frac{3}{5}}{\frac{4}{5}} \end{aligned}$ Centre of curvature is $\left(\frac{1}{16}, \frac{7}{4}\right)$	M1 A1 M1 A1A1 	Finding gradient Correct normal vector (not necessarily unit vector); may be in terms of x OR M2A1 for obtaining equation of normal line at a general point and differentiating partially

(v) \begin{tabular}{c|l|l|l|}
\hline Differentiating partially w.r.t. p \\
$0=x^{2}-2 p \ln x$

\quad

M1 \& \\
A1 \& \\
$p=\frac{x^{2}}{2 \ln x}$ and $y=\frac{x^{4}}{2 \ln x}-\frac{x^{4}}{4 \ln x}$ \& M1 \\
$y=\frac{x^{4}}{4 \ln x}$ \& A1 \\
\& \\
\hline
\end{tabular}

Pre-multiplication by transition matrix

5 (i)	$\mathbf{P}=\left(\begin{array}{cccc}0 & 0 & 0.4 & 0.3 \\ 0 & 0 & 0.6 & 0.7 \\ 0.8 & 0.1 & 0 & 0 \\ 0.2 & 0.9 & 0 & 0\end{array}\right)$	$\begin{array}{ll}\text { B2 } & \\ \end{array}$	Give B1 for two columns correct
(ii)	$\begin{aligned} & \mathbf{P}^{4}=\left(\begin{array}{cccc} 0.3366 & 0.3317 & 0 & 0 \\ 0.6634 & 0.6683 & 0 & 0 \\ 0 & 0 & 0.3366 & 0.3317 \\ 0 & 0 & 0.6634 & 0.6683 \end{array}\right) \\ & \mathbf{P}^{7}=\left(\begin{array}{cccc} 0 & 0 & 0.3334 & 0.3333 \\ 0 & 0 & 0.6666 & 0.6667 \\ 0.3335 & 0.3333 & 0 & 0 \\ 0.6665 & 0.6667 & 0 & 0 \end{array}\right) \end{aligned}$	B2 B2	Give B1 for two non-zero elements correct to at least 2dp Give B1 for two non-zero elements correct to at least 2dp
(iii)	$\mathbf{P}^{7}\left(\begin{array}{l}0.4 \\ 0.3 \\ 0.2 \\ 0.1\end{array}\right)=\left(\begin{array}{l}0.1000 \\ 0.2000 \\ 0.2334 \\ 0.4666\end{array}\right) \quad \mathrm{P}(8$ th letter is C$)=0.233$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Using \mathbf{P}^{7} (or \mathbf{P}^{8}) and initial probs
(iv)	$\begin{aligned} & 0.1000 \times 0.3366+0.2000 \times 0.6683 \\ & +0.2334 \times 0.3366+0.4666 \times 0.6683 \\ & \quad=0.558 \end{aligned}$	M1 M1 A1 ft A1 4	Using probabilities for 8th letter Using diagonal elements from \mathbf{P}^{4}
$(\mathrm{v})(A)$ (B)	$\mathbf{P}^{n}\left(\begin{array}{c}0.4 \\ 0.3 \\ 0.2 \\ 0.1\end{array}\right) \approx\left(\begin{array}{cccc}1 / 3 & 1 / 3 & 0 & 0 \\ 2 / 3 & 2 / 3 & 0 & 0 \\ 0 & 0 & 1 / 3 & 1 / 3 \\ 0 & 0 & 2 / 3 & 2 / 3\end{array}\right)\left(\begin{array}{c}0.4 \\ 0.3 \\ 0.2 \\ 0.1\end{array}\right)=\left(\begin{array}{c}0.2333 \\ 0.4667 \\ 0.1 \\ 0.2\end{array}\right)$ $\mathrm{P}((n+1)$ th letter is $A)=0.233$ $\mathbf{P}^{n}\left(\begin{array}{c}0.4 \\ 0.3 \\ 0.2 \\ 0.1\end{array}\right) \approx\left(\begin{array}{cccc}0 & 0 & 1 / 3 & 1 / 3 \\ 0 & 0 & 2 / 3 & 2 / 3 \\ 1 / 3 & 1 / 3 & 0 & 0 \\ 2 / 3 & 2 / 3 & 0 & 0\end{array}\right)\left(\begin{array}{l}0.4 \\ 0.3 \\ 0.2 \\ 0.1\end{array}\right)=\left(\begin{array}{c}0.1 \\ 0.2 \\ 0.2333 \\ 0.4667\end{array}\right)$ $\mathrm{P}((n+1)$ th letter is $A)=0.1$	M1 A1 M1 A1 4	Approximating \mathbf{P}^{n} when n is large and even Approximating \mathbf{P}^{n} when n is large and odd
(vi)	$\mathbf{Q}=\left(\begin{array}{cccc}0 & 0 & 0.4 & 0.3 \\ 0 & 0 & 0.6 & 0.6 \\ 0.8 & 0.1 & 0 & 0 \\ 0.2 & 0.9 & 0 & 0.1\end{array}\right)$	B1	

(vii)	$\mathbf{Q}^{n} \rightarrow\left(\begin{array}{llll} 0.1721 & 0.1721 & 0.1721 & 0.1721 \\ 0.3105 & 0.3105 & 0.3105 & 0.3105 \\ 0.1687 & 0.1687 & 0.1687 & 0.1687 \\ 0.3487 & 0.3487 & 0.3487 & 0.3487 \end{array}\right)$ Probabilities are $0.172,0.310,0.169,0.349$	M1 M1 A2 4	Considering \mathbf{Q}^{n} for large n OR at least two eqns for equilib probs Probabilities from equal columns OR solving to obtain equilib probs Give A1 for two correct
(viii)	$\begin{gathered} 0.3487 \times 0.1 \times 0.1 \\ =0.0035 \end{gathered}$	M1M1 A1 3	Using 0.3487 and 0.1

Post-multiplication by transition matrix

5 (i)	$\mathbf{P}=\left(\begin{array}{cccc}0 & 0 & 0.8 & 0.2 \\ 0 & 0 & 0.1 & 0.9 \\ 0.4 & 0.6 & 0 & 0 \\ 0.3 & 0.7 & 0 & 0\end{array}\right)$	B2 $\quad 2$	Give B1 for two rows correct
(ii)	$\begin{aligned} & \mathbf{P}^{4}=\left(\begin{array}{cccc} 0.3366 & 0.6634 & 0 & 0 \\ 0.3317 & 0.6683 & 0 & 0 \\ 0 & 0 & 0.3366 & 0.6634 \\ 0 & 0 & 0.3317 & 0.6683 \end{array}\right) \\ & \mathbf{P}^{7}=\left(\begin{array}{cccc} 0 & 0 & 0.3335 & 0.6665 \\ 0 & 0 & 0.3333 & 0.6667 \\ 0.3334 & 0.6666 & 0 & 0 \\ 0.3333 & 0.6667 & 0 & 0 \end{array}\right) \end{aligned}$	B2	Give B1 for two non-zero elements correct to at least 2dp Give B1 for two non-zero elements correct to at least 2dp
(iii)	$\begin{aligned} & \left(\begin{array}{llll} 0.4 & 0.3 & 0.2 & 0.1 \end{array}\right) \mathbf{P}^{7} \\ & =\left(\begin{array}{lll} 0.1000 & 0.2000 & 0.2334 \\ & 0.4666 \end{array}\right) \\ & \\ & \mathrm{P}(8 \text { th letter is } \mathrm{C})=0.233 \end{aligned}$	M1 A1 2	Using \mathbf{P}^{7} (or \mathbf{P}^{8}) and initial probs
(iv)	$\begin{aligned} & 0.1000 \times 0.3366+0.2000 \times 0.6683 \\ & +0.2334 \times 0.3366+0.4666 \times 0.6683 \\ & \quad=0.558 \end{aligned}$	M1 M1A1 ft A1 4	Using probabilities for 8th letter Using diagonal elements from \mathbf{P}^{4}
$(\mathrm{v})(A)$ (B)		$\begin{array}{\|lll} \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ & \\ \text { A1 } & \\ \hline \end{array}$	Approximating \mathbf{P}^{n} when n is large and even Approximating \mathbf{P}^{n} when n is large and odd
(vi)	$\mathbf{Q}=\left(\begin{array}{cccc}0 & 0 & 0.8 & 0.2 \\ 0 & 0 & 0.1 & 0.9 \\ 0.4 & 0.6 & 0 & 0 \\ 0.3 & 0.6 & 0 & 0.1\end{array}\right)$	B1 $\mathbf{1}$	

(vii)	$\mathbf{Q}^{n} \rightarrow\left(\begin{array}{llll} 0.1721 & 0.3105 & 0.1687 & 0.3487 \\ 0.1721 & 0.3105 & 0.1687 & 0.3487 \\ 0.1721 & 0.3105 & 0.1687 & 0.3487 \\ 0.1721 & 0.3105 & 0.1687 & 0.3487 \end{array}\right)$ Probabilities are $0.172,0.310,0.169,0.349$	M1 M1 A2 4	Considering \mathbf{Q}^{n} for large n OR at least two eqns for equilib probs Probabilities from equal rows OR solving to obtain equilib probs Give A1 for two correct
(viii)	$\begin{gathered} 0.3487 \times 0.1 \times 0.1 \\ =0.0035 \end{gathered}$	$\begin{array}{\|ll} \mathrm{M} 1 \mathrm{M} 1 & \\ \text { A1 } & \\ & 3 \end{array}$	Using 0.3487 and 0.1

